OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in the commercial products.
Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the code.
Face recognition based on YOLO, You Only Look Once: Unified, Real-Time Object Detection.
1. Abstract
自YOLO算法提出以来,至今已经发展到了v3,性能、集成性等都得到了极大的提升,用YOLO来实现人脸识别算法,其特点是模型训练参数较少,可移植并且实时性很高。目前为止,集成现有技术实现一个基于YOLO算法的人脸识别系统是一项很有挑战性的工作。近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN),它们是two-stage的,需要先使用启发式方法(selective search)或者CNN网络(RPN)产生Region Proposal,然后再在Region Proposal上做分类与回归。另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个CNN网络直接预测不同目标的类别与位置。第一类方法准确度高,但是速度慢,第二类算法速度快,但是准确性较低。本文将介绍Yolo算法,其全称是You Only Look Once: Unified, Real-Time Object Detection,You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。这里我们谈的是Yolo-v1版本算法,其性能差于后来的SSD算法的,但是Yolo后来也继续进行改进,产生了Yolo9000算法。本文主要讲述Yolo-v1算法的原理。
This paper, Through-wall Human Pose Estimation Using Radio Signals, is extracted from a paper in CVPR2018 published by Dina Katabi, a famous team in the wireless communication field, and demonstrates accurate human pose estimation through walls and occlusions.
In this paper, the system RF-pose designed by wireless signals can accurately predict human activities, and it also has very accurate prediction results when the environment is blocked by walls and other obstacles.
Tensorflow中一些简单但是容易忘记的:
import tensorflow as tf
a = tf.matmul(x,w1) #用来表示矩阵的乘法操作
weight = tf.Variable(tf.random_normal([2,3],stddev = 2))
bias = tf.Variable(tf.zeros([3]))
#偏置项
Data Download and Extract
Taking cifar10 as an example,
DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(path, filename)
#output: path\filename